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#R code: Discussion 8.     Sta108, Fall 2007, Utts 

 

#today's topics:  

#Indicator variables,  

#Model selection,  

#Few more useful tricks 

 

### Indicator variables 

 

#new example 

Data = data.frame(Y = c(.24, .21, .22, .32, .51, .56, .56, .67, .89, .92), 

      X1 = c(0, 0, 0, 0, 0, 0, 1, 1, 1, 1),  

      X2 = c(1, 1, 1, 2, 2, 2, 3, 3, 4, 4),  

      X3 = c("low","low","low","low","med","med","med", 

             "high","high","high"))  

      #X1 has 2 levels 

      #X2 has 4 levels, quantitative categorical variables, 

      #X3 has 3 levels, qualitative categorical variables 

Data 

 

#Indicators In Practice: 

#THE FOLLOWING CORRESPONDS TO THE CODING CALLED “OPTION 1” IN CLASS: 

#1. If variable is {0,1} only, you do NOT need to set any additional contrast options 

#just use the variable name by itself or factor() 

Fit = lm(Y ~ X1, data=Data) 

Fit = lm(Y ~ factor(X1), data=Data) 

summary( Fit ) 

 

#2. If variable is NOT in the form {0,1}, and you want the last level to be the base level: 

#set options(contrasts()) to set the base level to be the LAST level of the factor, by 

typing: 

options(contrasts = c("contr.SAS", "contr.SAS")) 

   #now, anytime factor() function is used, the base level will be the LAST level of the 

factor    

   #(highest Number, or highest Letter in the alphabet) 

Fit = lm(Y ~ factor(X2) + factor(X3), data=Data) 

summary( Fit ) 

   #alternatively, you may create a 'factor'/indicator variable and store it in your 

dataset: 

Data$X2ind = factor(Data$X2) 

Data$X3ind = factor(Data$X3) 

Data 

Fit = lm(Y ~ X2ind + X3ind, data=Data) 

summary( Fit ) 

 

#3. If the variable is categorical, i.e. {text},  

#use option 'contr.treatment' with base level set to desired level number, by typing: 

Data$X3factor = C( factor(Data$X3), contr.treatment(n=3, base=2) )   

   #this creates column of [X3factor] inside your dataset Data,  

   #which represents indicator variables with base level: 'low' 

   #here, base level is chosen from [ 'high', 'low', 'med' ] factor levels in alphabetical 

order 

Fit = lm(Y ~ X3factor, data=Data)  

summary( Fit ) 
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#The following part of code is for LEARNING about contrast function C(). 

#I advise you to run the code in R and see the results for yourself. 

#You will rarely need to use these. 

 

  #create a categorical variable (with levels) from a numerical column 

  #can be used when only TWO levels/categories are present 

  factor(Data$X1) 

     #here, base level is FIRST level of factor, SECOND level will be fitted by model 

  summary( lm(Y ~ factor(X1), data=Data) ) 

 

  #create indicators with constrain: sum to zero (OPTION 2 IN CLASS NOTES), see (8.44) 

alternative coding 

  C( factor(Data$X1), contr.sum ) 

  C( factor(Data$X2), contr.sum ) 

  C( factor(Data$X3), contr.sum ) 

 

  #indicators that contrasts each level with base level (specified by 'base') 

   #by default, base level is the FIRST level, or FIRST letter in alphabet, seen in dataset: 

  C( factor(Data$X1), contr.treatment ) 

  C( factor(Data$X2), contr.treatment ) 

  C( factor(Data$X3), contr.treatment ) 

   #to set baseline: to SECOND level seen in the dataset 

  C( factor(Data$X3), contr.treatment(n=3, base=2) ) 

      #'n' is the total number of levels present in X 

      #'base' is the specified baseline level 

   #to create baseline to be the LAST level, do {one} of the following, see (8.35): 

   #1: change 'base' in 'contr.treatment' 

   #2: use 'contr.SAS 

  C( factor(Data$X2), contr.treatment(n=4, base=4) ) 

  C( factor(Data$X3), contr.treatment(n=3, base=3) ) 

  C( factor(Data$X1), contr.SAS ) 

  C( factor(Data$X2), contr.SAS ) 

  C( factor(Data$X3), contr.SAS ) 

 

  #note, with qualitative variables, the order is chosen based on dictionary order 

  #so: level1 = "high", level2 = "low", level3 = "med", because of alphabetical ordering 

 

 

 

 

 

 

### Model Selection 

 

#Example: Grocery Retailer: Problem 6.9 

Data = read.table("CH06PR09.txt") 

names(Data) = c("Hours","Cases","Costs","Holiday") 

Fit = lm(Hours~Cases+Costs+Holiday, data=Data) 

 

#Sub-models are: only X1, or only X2, or only X3, or just X1 and X2, or just X1 and X3, or 

just X2 and X3, or all three variables; also models including powers of these variables 

(appropriately centered), or interactions like X1X2, or other transformations (square roots, 

logs, etc.) 
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#Method 1: 

 

#leaps() function: searches for the best subsets of predictors using specified criterion 

  #This is found in the package leaps, which must first be loaded: 

library(leaps) 

  #If R can't find the package you will need to go to the R repository via  

  #the Packages menu and the Install package(s)… option to download it and install it.    

 

leaps( x=Data[,2:4], y=Data[,1], names=names(Data)[2:4], method="Cp") 

#input: 

  #x: matrix consisting of the predictor variables 

  #y: vector consisting of the response variable 

  #names: of the predictor variables 

  #method: criterion to use. Possible choices: "r2", "adjr2", "Cp" 

#output: 

  #$which: each row is a sub-model, variables used are designated by TRUE 

  #$Cp: value of the Mallows' Cp criterion for each sub-model, in the same order 

 

###Goal of model selection: Choose model that maximizes/minimizes a chosen criterion.  

    #1) Minimizes Mallows' Cp Criterion, or 

    #2) Maximizes R-Square, or Adjusted-R-Square 

 

#In class we used 3 criterions at once, "r2", "adjr2", "Cp",  

#however, leaps() can take one criterion at a time. 

leaps( x=Data[,2:4], y=Data[,1], names=names(Data)[2:4], method="r2") 

leaps( x=Data[,2:4], y=Data[,1], names=names(Data)[2:4], method="adjr2") 

 

 

 

#Method 2: 

 

#Make a list of each sub-model you wish to consider, then fit a linear model  

#for each sub-model individually to obtain the selection criteria for that model.    

 

#Start with the full model, then use:  

#update() function: to remove and/or add predictors step-by-step, One-by-One.   

NewMod = update( Fit, .~. - Costs ) 

  #We started with full model Fit and deleted just one variable, Costs. 

  #Then fit a new model named NewMod with only the remaining predictors. 

NewMod 

#to modify NewMod to fit another model without Costs and Cases, delete Cases from NewMod 

NewMod = update( NewMod, .~. - Cases) 

NewMod 

#to add Costs back into the model (but not Cases) 

NewMod = update( NewMod,  .~. + Costs)   

NewMod 

   

#In each Step,  

#Retrieve R-Squared or Adjusted-R-Squared value from summary() output: 

summary(NewMod) 

#Calculate Cp criterion manually by formula (9.9) (see p.358): you need: 

  #MSE:  MSE comes from the full model with all the potential predictor variables, Fit. 

  #SSEp: SSE for the sub-model in the ANOVA table for that sub-model. 

  #n:    number of observations in the data set. 

  #p:    number of parameters in the sub-model  (with p-1 predictor variables). 
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MSE = anova(Fit)[4,3] 

SSEp = anova(NewMod)[3,2] 

n = nrow(Data) 

p = 3 

Cp = SSEp / MSE - (n - 2*p) 

Cp 

 

 

### Method 3: 

#Similar to Method 2, yet the re-fitting of new models is done through funciton lm(). 

 

 

### Few more useful tricks 

  

#Example: Grocery Retailer: Problem 6.9 

Data = read.table("CH06PR09.txt") 

names(Data) = c("Hours","Cases","Costs","Holiday") 

dim(Data) 

 

#Useful for removing outliers, or for data-splitting (used in model validation): 

 #remove ONE row from the dataset, say row #23: 

 DataNew = Data[-23, ] 

 #remove THREE specific rows from the dataset, say rows #2, 5, and 19: 

 DataNew = Data[-c(2,19,5), ]    #order does not matter 

 #get part of the dataset, say rows #1-30 

 DataNew = Data[1:30, ]         #by subsetting wanted rows 

 DataNew = Data[-(31:52), ]         #by removing unwanted rows 

 

#Problem 9.25 asks to consider observaitons 57-113 from your dataset,  

#instead of the full dataset with rows 1-113. 

Data = read.table("APPENC01.txt") 

dim(Data) 

#zoom-in on observations (rows) 57-113: 

DataNew = Data[57:113, ] 

#then work with DataNew. 


