
 1

#R code: Discussion 8. Sta108, Fall 2007, Utts

#today's topics:

#Indicator variables,

#Model selection,

#Few more useful tricks

Indicator variables

#new example

Data = data.frame(Y = c(.24, .21, .22, .32, .51, .56, .56, .67, .89, .92),

 X1 = c(0, 0, 0, 0, 0, 0, 1, 1, 1, 1),

 X2 = c(1, 1, 1, 2, 2, 2, 3, 3, 4, 4),

 X3 = c("low","low","low","low","med","med","med",

 "high","high","high"))

 #X1 has 2 levels

 #X2 has 4 levels, quantitative categorical variables,

 #X3 has 3 levels, qualitative categorical variables

Data

#Indicators In Practice:

#THE FOLLOWING CORRESPONDS TO THE CODING CALLED “OPTION 1” IN CLASS:

#1. If variable is {0,1} only, you do NOT need to set any additional contrast options

#just use the variable name by itself or factor()

Fit = lm(Y ~ X1, data=Data)

Fit = lm(Y ~ factor(X1), data=Data)

summary(Fit)

#2. If variable is NOT in the form {0,1}, and you want the last level to be the base level:

#set options(contrasts()) to set the base level to be the LAST level of the factor, by

typing:

options(contrasts = c("contr.SAS", "contr.SAS"))

 #now, anytime factor() function is used, the base level will be the LAST level of the

factor

 #(highest Number, or highest Letter in the alphabet)

Fit = lm(Y ~ factor(X2) + factor(X3), data=Data)

summary(Fit)

 #alternatively, you may create a 'factor'/indicator variable and store it in your

dataset:

Data$X2ind = factor(Data$X2)

Data$X3ind = factor(Data$X3)

Data

Fit = lm(Y ~ X2ind + X3ind, data=Data)

summary(Fit)

#3. If the variable is categorical, i.e. {text},

#use option 'contr.treatment' with base level set to desired level number, by typing:

Data$X3factor = C(factor(Data$X3), contr.treatment(n=3, base=2))

 #this creates column of [X3factor] inside your dataset Data,

 #which represents indicator variables with base level: 'low'

 #here, base level is chosen from ['high', 'low', 'med'] factor levels in alphabetical

order

Fit = lm(Y ~ X3factor, data=Data)

summary(Fit)

 2

#The following part of code is for LEARNING about contrast function C().

#I advise you to run the code in R and see the results for yourself.

#You will rarely need to use these.

 #create a categorical variable (with levels) from a numerical column

 #can be used when only TWO levels/categories are present

 factor(Data$X1)

 #here, base level is FIRST level of factor, SECOND level will be fitted by model

 summary(lm(Y ~ factor(X1), data=Data))

 #create indicators with constrain: sum to zero (OPTION 2 IN CLASS NOTES), see (8.44)

alternative coding

 C(factor(Data$X1), contr.sum)

 C(factor(Data$X2), contr.sum)

 C(factor(Data$X3), contr.sum)

 #indicators that contrasts each level with base level (specified by 'base')

 #by default, base level is the FIRST level, or FIRST letter in alphabet, seen in dataset:

 C(factor(Data$X1), contr.treatment)

 C(factor(Data$X2), contr.treatment)

 C(factor(Data$X3), contr.treatment)

 #to set baseline: to SECOND level seen in the dataset

 C(factor(Data$X3), contr.treatment(n=3, base=2))

 #'n' is the total number of levels present in X

 #'base' is the specified baseline level

 #to create baseline to be the LAST level, do {one} of the following, see (8.35):

 #1: change 'base' in 'contr.treatment'

 #2: use 'contr.SAS

 C(factor(Data$X2), contr.treatment(n=4, base=4))

 C(factor(Data$X3), contr.treatment(n=3, base=3))

 C(factor(Data$X1), contr.SAS)

 C(factor(Data$X2), contr.SAS)

 C(factor(Data$X3), contr.SAS)

 #note, with qualitative variables, the order is chosen based on dictionary order

 #so: level1 = "high", level2 = "low", level3 = "med", because of alphabetical ordering

Model Selection

#Example: Grocery Retailer: Problem 6.9

Data = read.table("CH06PR09.txt")

names(Data) = c("Hours","Cases","Costs","Holiday")

Fit = lm(Hours~Cases+Costs+Holiday, data=Data)

#Sub-models are: only X1, or only X2, or only X3, or just X1 and X2, or just X1 and X3, or

just X2 and X3, or all three variables; also models including powers of these variables

(appropriately centered), or interactions like X1X2, or other transformations (square roots,

logs, etc.)

 3

#Method 1:

#leaps() function: searches for the best subsets of predictors using specified criterion

 #This is found in the package leaps, which must first be loaded:

library(leaps)

 #If R can't find the package you will need to go to the R repository via

 #the Packages menu and the Install package(s)… option to download it and install it.

leaps(x=Data[,2:4], y=Data[,1], names=names(Data)[2:4], method="Cp")

#input:

 #x: matrix consisting of the predictor variables

 #y: vector consisting of the response variable

 #names: of the predictor variables

 #method: criterion to use. Possible choices: "r2", "adjr2", "Cp"

#output:

 #$which: each row is a sub-model, variables used are designated by TRUE

 #$Cp: value of the Mallows' Cp criterion for each sub-model, in the same order

###Goal of model selection: Choose model that maximizes/minimizes a chosen criterion.

 #1) Minimizes Mallows' Cp Criterion, or

 #2) Maximizes R-Square, or Adjusted-R-Square

#In class we used 3 criterions at once, "r2", "adjr2", "Cp",

#however, leaps() can take one criterion at a time.

leaps(x=Data[,2:4], y=Data[,1], names=names(Data)[2:4], method="r2")

leaps(x=Data[,2:4], y=Data[,1], names=names(Data)[2:4], method="adjr2")

#Method 2:

#Make a list of each sub-model you wish to consider, then fit a linear model

#for each sub-model individually to obtain the selection criteria for that model.

#Start with the full model, then use:

#update() function: to remove and/or add predictors step-by-step, One-by-One.

NewMod = update(Fit, .~. - Costs)

 #We started with full model Fit and deleted just one variable, Costs.

 #Then fit a new model named NewMod with only the remaining predictors.

NewMod

#to modify NewMod to fit another model without Costs and Cases, delete Cases from NewMod

NewMod = update(NewMod, .~. - Cases)

NewMod

#to add Costs back into the model (but not Cases)

NewMod = update(NewMod, .~. + Costs)

NewMod

#In each Step,

#Retrieve R-Squared or Adjusted-R-Squared value from summary() output:

summary(NewMod)

#Calculate Cp criterion manually by formula (9.9) (see p.358): you need:

 #MSE: MSE comes from the full model with all the potential predictor variables, Fit.

 #SSEp: SSE for the sub-model in the ANOVA table for that sub-model.

 #n: number of observations in the data set.

 #p: number of parameters in the sub-model (with p-1 predictor variables).

 4

MSE = anova(Fit)[4,3]

SSEp = anova(NewMod)[3,2]

n = nrow(Data)

p = 3

Cp = SSEp / MSE - (n - 2*p)

Cp

Method 3:

#Similar to Method 2, yet the re-fitting of new models is done through funciton lm().

Few more useful tricks

#Example: Grocery Retailer: Problem 6.9

Data = read.table("CH06PR09.txt")

names(Data) = c("Hours","Cases","Costs","Holiday")

dim(Data)

#Useful for removing outliers, or for data-splitting (used in model validation):

 #remove ONE row from the dataset, say row #23:

 DataNew = Data[-23,]

 #remove THREE specific rows from the dataset, say rows #2, 5, and 19:

 DataNew = Data[-c(2,19,5),] #order does not matter

 #get part of the dataset, say rows #1-30

 DataNew = Data[1:30,] #by subsetting wanted rows

 DataNew = Data[-(31:52),] #by removing unwanted rows

#Problem 9.25 asks to consider observaitons 57-113 from your dataset,

#instead of the full dataset with rows 1-113.

Data = read.table("APPENC01.txt")

dim(Data)

#zoom-in on observations (rows) 57-113:

DataNew = Data[57:113,]

#then work with DataNew.

